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Abstract—The speed-in-action problem for a linear discrete-time system with bounded control
is considered. In the case of superellipsoidal constraints on the control, the optimal control
process is constructed explicitly on the basis of the discrete maximum principle. The prob-
lem of calculating the initial conditions for an adjoint system is reduced to solving a system
of algebraic equations. The algorithm for generating a guaranteeing solution based on the
superellipsoidal approximation method is proposed for systems with general convex control
constraints. The procedure of superellipsoidal approximation is reduced to solving a number of
convex programming problems. Examples are given.
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1. INTRODUCTION

One of the natural control quality functions is the time spent by the system to achieve a given
terminal state. In practice, the resulting optimal control problem is called the speed-in-action
problem. It is essential that the speed-in-action problem for linear discrete-time systems has a
number of serious differences from a similar problem for continuous systems. While in the case of
continuous time, the solution obtained on the basis of the Pontryagin’s maximum principle [1] for a
linear system guarantees the relay nature of the optimal control in terms of speed, a similar result
for a system with discrete time [2, 3] is incorrect.

The direct approach based on minimizing the norm of the terminal state for all control actions
turns out to be difficult to apply for high-dimensional systems with a large time horizon and
vector control. This is due to the fact that the resulting mathematical programming problem is
characterized by a rapid increase in the number of constraints and optimization variables with an
increase in the number of steps required for the system to reach origin. At the same time, for
almost all initial states, the extremum in the speed-in-action problem is irregular [4], which also
complicates the use of known numerical methods.

Consideration of the optimality conditions of the process using various classical approaches leads
to two fundamentally different methods for solving the speed problem. Bellman’s dynamic pro-
gramming method [5] makes it possible to construct an optimal control in a positional form. In
the case when the set of admissible control values is a polyhedron, the calculation of each control
action is reduced to solving a linear programming problem [6]. Also, in [6], a method for forming
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optimal control in the case of arbitrary convex control constraints based on polyhedral approxima-
tion is demonstrated [7]. This approach has a number of disadvantages related to computational
difficulties. The accuracy of the guaranteeing solution in the speed-in-action problem is achieved
by increasing the number of vertices of the polyhedral approximation, which leads to an exponen-
tial increase in the complexity of the corresponding linear programming problems. Due to this
fact, such approach, when implemented on standard computing devices, is characterized by either
low accuracy of the solution, or a relatively small time horizon, especially for large-dimensional
systems.

On the contrary, the combination of optimality conditions in the speed-in-action problem with
the discrete maximum principle [1–3] allows optimal program control to be formed [4]. An essential
condition for the applicability of these methods is the strict convexity of the set of admissible
control values. But the relation for calculating the initial state of a conjugate system in the case
of an arbitrary structure of control constraints is difficult to solve. In [8], a special case of an
ellipsoidal structure of a set of admissible control values is presented. An analytical solution to
the speed-in-action problem based on the necessary and sufficient optimality conditions presented
in [4].

A natural approach is to combine the ideas of constructing a guaranteeing solution from [6]
on the basis of ellipsoidal approximation of the set of admissible control values in combination
with methods of forming program control according to the discrete maximum principle [4, 8].
The technique of ellipsoidal approximation is widely used in the theory of optimal control [9, 10].
However, the class of ellipsoids does not allow achieving arbitrary accuracy of the approximation of
the initial set, and consequently, the accuracy of solving the optimal control problem. The article
considers a class of superellipsoidal sets (the exact definition is given in Section 2), which allow a
higher order of the accuracy while maintaining strict convexity conditions, which guarantees the
simplicity of solving the speed-in-action problem in the same way [8].

Superellipses on the plane have been known for a long time as Lame curves [11] and have a large
number of different applications in natural science and technical disciplines. They are actively
used, for example, in geodesy and mapping tasks [12], in botany for modeling plant growth [13]
and describing natural shapes [14], designing waveguides for antenna arrays [15, 16] or for modeling
bends of various structures [17]. However, the general study of the properties of these figures is
usually limited to the two-dimensional case [12, 18]. This fact makes it relevant to study the
properties of this class of geometric bodies in a space of arbitrary dimension in terms of convex
analysis: the description of their support function, support point and normal cone, the solution of
various approximation problems.

The purpose of this work is to develop a method for generating optimal control explicitly in the
case of a superellipsoidal structure of a set of acceptable control values, as well as to describe an
approach for constructing a superellipsoidal approximation of an arbitrary convex body with the
highest possible accuracy. The fundamental difference from this paper and both classical [19–21] and
modern [22, 23] results is the consideration of arbitrary vector control, which is convex constrained,
and the lack of restrictions on the dimension of the phase space. It is a more general statement of
the problem, expanding the range of possible applications.

The article has the following structure. Section 2 presents non-standard designations and as-
sumptions that are used in the article. In Section 3, the speed-in-action problem is considered,
the maximum principle is described as the main tool for its solution, and the formulation of the
problem of superellipsoidal approximation of the set of admissible control values is formulated
in order to form a guaranteeing process. Section 4 presents an exact solution to the speed-in-
action problem in the case of a superellipsoidal structure of a set of admissible control values.
Section 5 describes a method for reducing the problem of optimal in the sense of the Lebesgue
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measure superellipsoidal approximation of a convex body to a number of convex programming
problems. Section 6 demonstrates examples of constructing a guaranteeing process in a speed-
in-action problem for systems of different dimensions based on the obtained theoretical results.
Estimates of the accuracy of the constructed processes in comparison with the optimal solution are
given.

2. DESIGNATIONS

We will assume that the phase space is a Euclidean space R
n with a scalar product defined by

the relation

(x, y) =
n∑

i=1

xiyi.

For any r ∈ [1;+∞) define on R
n norm

‖x‖r =
(

n∑
i=1

|xi|r
) 1

r

.

For r = 2 the norm ‖ · ‖2 is consistent with the scalar product. From the point of view of theory,
the value r = 1 is acceptable, but it will not be considered within the paper, which allows us to
define the number q > 1 as a Helder dual of the number r:

1

r
+

1

q
= 1.

For arbitrary sets X ,U ⊂ R
n and the matrix D ∈ R

n×n we denote the Minkowski sum by X + U

X + U = {x+ u : x ∈ X , u ∈ U},

and we denote by DU the image of the set U under the mapping D

DU = {Du : u ∈ U}.

By ∂U and int U we denote the sets of boundary and interior points of U respectively. cone {U} is
the conic hull of the set U [24, § 2 ch. I].

If the set U ⊂ R
n is a convex compact, then for an arbitrary point u ∈ U by N (u,U) we denote

the normal cone of the set U at the point u [24, § 2 ch. I]:

N (u,U) =
{
p ∈ R

n \ {0} : (p, u) = max
ũ∈U

(p, ũ)

}
.

The elements of the normal cone N (u,U) are called support vectors to U at the point u. Note that
by construction equality N (u,U) = ∅ is valid if and only if the inclusion u ∈ int U is correct. If the
inclusion of 0 ∈ int U is also true, then U will be called a convex body [25, Section 3 § 1 ch. IV]
and for an arbitrary x ∈ R

n we introduce the Minkowski functional [25, Section 3 § 2 ch. III] or
the calibration function [24, § 4 ch. I]:

M(x,U) = inf{t > 0: x ∈ tU} = inf

{
t > 0:

x

t
∈ U

}
.
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1044 IBRAGIMOV, PODGORNAYA

The strickly convex set U ⊂ R
n is such set that for any u1, u2 ∈ U , λ ∈ (0; 1) the inclusion

λu1 + (1− λ)u2 ∈ int U is correct.

We will call a superellipse or superellipsoidal set for some a1 > 0, . . . , an > 0, r > 1 a set of the
form

Er(a1, . . . , an) =
{
x ∈ R

n :
n∑

i=1

∣∣∣∣xiai
∣∣∣∣r � 1

}
. (1)

We will assume shortering a = (a1, . . . , an)
T and denote the corresponding superellipse by Er(a).

By diag(a) ∈ R
n×n we denote a diagonal matrix constructed by the vector a ∈ R

n:

diag(a) =

⎛
⎜⎜⎜⎜⎝
a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . an

⎞
⎟⎟⎟⎟⎠ .

3. PROBLEM STATEMENT

The linear discrete-time system with limited control (A,U) is considered:

x(k + 1) = Ax(k) + u(k),

x(0) = x0, u(k) ∈ U , k ∈ N ∪ {0},
(2)

where x(k) ∈ R
n is the state vector of the system, u(k) ∈ R

n is the control action, A ∈ R
n×n is

the matrix of the system, U ⊂ R
n is the set of valid control values. It is assumed that detA �= 0,

U is a convex compact, 0 ∈ int U .
For the (2) system, the speed-in-action problem is solved, i.e. it is required to transfer the system

(A,U) from a given initial state x0 ∈ R
n to the origin in the minimum number of steps Nmin:

Nmin = min {N ∈ N ∪ {0} : ∃u(0), . . . , u(N − 1) ∈ U : x(N) = 0} .

The control process {x∗(k), u∗(k − 1), x∗(0)}Nmin
k=1 , satisfying the condition x∗(Nmin) = 0, we will

call optimal. It is assumed that the speed-in-action problem for the system (A,U) is solvable, i.e.
Nmin < ∞. The issues of solvability of the speed-in-action problem for the (2) system are discussed
in detail in [26].

The construction of optimal processes is closely related to the apparatus of 0-controllable sets
[4, 6]. For an arbitrary N ∈ N ∪ {0} we denote by X (N) ⊂ R

n the 0-controllable set of the sys-
tem (2) in N steps, i.e. the set of those initial states from which the system (2) can be transferred
to 0 in N steps by acceptable control actions:

X (N) =

{
{x0 ∈ R

n : ∃u(0), . . . , u(N − 1) ∈ U : x(N) = 0}, N ∈ N,

{0}, N = 0.
(3)

Then, according to the definition of Nmin the following representation is also valid:

Nmin = min{N ∈ N ∪ {0} : x0 ∈ X (N)}. (4)

At the same time, the control, as demonstrated in [4, 6], is optimal if and only if for all k =
0, Nmin − 1 the inclusion is true

x∗(k + 1) = Ax∗(k) + u∗(k) ∈ X (Nmin − k − 1).
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In [4], a number of results were obtained for the speed-in-action problem, which can be presented
in the form of the maximum principle for a strictly convex U .

Theorem 1. Let U ⊂ R
n be a strictly convex and compact set, 0 ∈ int U , detA �= 0, a class of

sets {X (N)}∞N=0 is defined according to (3), the control process {x∗(k), u∗(k − 1), x∗(0)}Nmin
k=1 and

the trajectory of the conjugate system {ψ(k)}Nmin−1
k=0 satisfy the relations

x∗(k + 1) = Ax∗(k) + u∗(k),

u∗(k) = αarg max
u∈U

(
(A−1)Tψ(k), u

)
,

ψ(k + 1) = (A−1)Tψ(k),

x∗(0) = x0,

− ψ(0) ∈ N (x0, αX (Nmin)) ,

α = M(x0,X (Nmin)).

Then

1) {x∗(k), u∗(k − 1), x∗(0)}Nmin
k=1 is the optimal process for the system (A,U);

2) if α = 1, then the optimal process is the only one;
3) −ψ(k) ∈ N (x∗(k), αX (Nmin − k)), k = 0, Nmin − 1.

From a computational point of view, the question of applying the Theorem 1 comes down to
determining α and ψ(0) from the conditions

− ψ(0) ∈ N (x0, αX (Nmin)) ,

α = M(x0,X (Nmin)).
(5)

This problem in the case of an arbitrary strictly convex body U can be a nontrivial problem.

The main purpose of this paper is to construct effective methods for solving the conditions (5)
with respect to ψ(0) ∈ R

n \ {0} and α > 0 for the special case when U allows the representation

U = BEr(a), B ∈ R
n×n, detB �= 0, a1, . . . , an > 0, r > 1. (6)

Another goal of the paper is to develop a method for approximating an arbitrary convex body U
by a nested set Û of the form (6), that minimizes the Lebesgue measure of the difference between
two sets μ(U \ Û), in order to construct a guaranteed solution in the speed-in-action problem for
the system (A,U).

4. THE OPTIMAL PROCESS IN THE CASE OF A SUPERELLIPSOIDAL STRUCTURE
OF CONTROL CONSTRAINTS

The conditions (5) can be reduced to an equivalent system of algebraic equations in the case
of (6). To do this, we will carry out an analytical description of 0-controllable sets and some
properties of strictly convex and superellipsoidal sets.

Lemma 1 [4, Lemma 1]. Let detA �= 0, the class of sets {X (N)}∞N=0 be determined by the
relations (3). Then for any N ∈ N the representation is true

X (N) = −
N∑
k=1

A−kU .
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Lemma 2 [27, Lemma 3]. Let U ⊂ R
n be a strictly convex compact, 0 ∈ int U . Then for any

different u1, u2 ∈ U it is true that

N (u1,U) ∩ N (u2,U) = ∅.

The following statement follows from [27, Lemmas 5, 6].

Lemma 3. Let U ,X ⊂ R
n be convex compacts, u ∈ U , x ∈ X , A ∈ R

n×n, detA �= 0.

Then

1) N (u+ x,U + X ) = N (u,U) ∩ N (x,X );

2) N (Ax,AX ) = (A−1)TN (x,X ).

The Lemma 3 defines the transformation of the normal cone of convex sets with non-degenerate
linear mapping and Minkowski addition. Taking into account the Lemma 1 this makes it possible
to describe an arbitrary normal cone of any 0-controllable set in terms of the normal cones of the
set U or Er(a1, . . . , an) in the case (6). On the other hand, the Lemma 2 establishes a one-to-one
correspondence between a boundary point and its normal cone for a strictly convex set. If this
dependence is described explicitly, then it is possible to obtain algebraic equations equivalent to
the conditions (5).

We introduce for an arbitrary r > 1 the bijective operator Ir : R
n → R

n:

Ir(x) =
(
sgn(x1)|x1|r−1, . . . , sgn(xn)|xn|r−1

)
.

Lemma 4. Let the set Er(a) be defined by the relations (1). Then

1) for any x ∈ ∂Er(a) it is true that

N (x, Er(a)) =
{
γ diag(a)−1Ir

(
diag(a)−1x

)
∈ R

n : γ > 0
}
;

2) for any p ∈ R
n \ {0} there is a unique

x∗(p) = arg max
x∈Er(a)

(p, x) =
diag(a)Iq (diag(a)p)

‖diag(a)p‖q−1
q

.

The proof of the Lemma 4 and all other statements is given in the Appendix.

Lemma 5. Let U = DEr(a), where Er(a) is determined by the relations (1), D∈R
n×n, detD �=0.

Then

1) for any u ∈ ∂U

N (u,U) =
{
γ(D−1)Tdiag(a)−1Ir

(
diag(a)−1D−1u

)
∈ R

n : γ > 0
}
;

2) for any p ∈ R
n \ {0} there is only one

u∗(p) = arg max
u∈U

(p, u) =
Ddiag(a)Iq

(
diag(a)DTp

)
‖diag(a)DTp‖q−1

q

.

The Lemma 5, on the one hand, allows us to calculate the optimal control according to the
Theorem 1 in the case (6), when we choose D = B. On the other hand, the Lemma 5 in combination
with Lemmas 1 and 2 connects a point on the boundary of the 0-controllable set with an element of
its normal cone, when we choose D = −A−kB, which makes it possible to reduce the conditions (5)
to equivalent algebraic equations. We formulate this fact in the form of a theorem.
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Theorem 2. Let U be determined according to (6), x0 �= 0, ψ(0) ∈ R
n \ {0}, α > 0. Then ψ(0)

and α satisfy the conditions (5) if and only if the following equality is true:

−x0 = α
Nmin∑
k=1

A−kBdiag(a)Iq
(
diag(a)(A−kB)Tψ(0)

)
‖diag(a)(A−kB)Tψ(0)‖q−1

q

.

The system of equations presented in the Theorem 2 has not the only solution, since the right
part is invariant to the multiplication of the vector ψ(0) by any positive number. To use numerical
methods, we can propose a modification of this system, which has a single solution.

Corollary 1. Let U be determined according to (6), ψ(0)∈R
n \ {0}, α> 0. Then for any x0 �= 0

there is a unique solution of the system of equations⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− x0 = α
Nmin∑
k=1

A−kBdiag(a)Iq
(
diag(a)(A−kB)Tψ(0)

)
‖diag(a)(A−kB)Tψ(0)‖q−1

q

,

(ψ(0), ψ(0)) = 1,

which also satisfies the conditions (5).

Example 1. Consider the procedure for calculating ψ(0), α, Nmin based on the Corollary 1. The
parameters of the system (2) have the following values:

A =

(
3 1
1 −2

)
, B =

⎛
⎜⎜⎝

√
2

2

√
2

2

−
√
2

2

√
2

2

⎞
⎟⎟⎠ , a1 = 2, a2 = 3,

r =
4

3
, q = 4, x0 =

(
1

3
,
4

3

)T

.

Suppose that Nmin = 2, and we make up the system of equations presented in the Theorem 1:

0.20
(
0.20ψ1(0) + 0.81ψ2(0)

)3
+ 0.91

(
0.91ψ1(0)− 0.61ψ2(0)

)3
((
0.20ψ1(0) + 0.81ψ2(0)

)4
+
(
0.91ψ1(0)− 0.61ψ2(0)

)4) 3
4

+
0.17

(
0.17ψ1(0)− 0.32ψ2(0)

)3
+ 0.17

(
0.17ψ1(0) + 0.39ψ2(0)

)3
((
0.17ψ1(0) − 0.32ψ2(0)

)4
+
(
0.17ψ1(0) + 0.39ψ2(0)

)4) 3
4

= − 1

3α
,

0.81
(
0.20ψ1(0) + 0.81ψ2(0)

)3 − 0.61
(
0.91ψ1(0)− 0.61ψ2(0)

)3
((
0.20ψ1(0) + 0.81ψ2(0)

)4
+
(
0.91ψ1(0)− 0.61ψ2(0)

)4) 3
4

+
−0.32

(
0.17ψ1(0)− 0.32ψ2(0)

)3
+ 0.39

(
0.17ψ1(0) + 0.39ψ2(0)

)3
((
0.17ψ1(0) − 0.32ψ2(0)

)4
+
(
0.17ψ1(0) + 0.39ψ2(0)

)4) 3
4

= − 4

3α
.

By supplementing this system with the equivalence ψ1(0)
2 +ψ2(0)

2 = 1 according to the Corollary
of 1, we get the following solution:

ψ1(0) = −0.35, ψ2(0) = −0.94, α = 1.08.

Due to (5) it is true that α = M(x0,X (2)). It is correct that x0 �∈ X (2) since α > 1. We got a
contradiction, from which it follows that Nmin > 2.
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Assume that Nmin = 3, and make up the system of equations presented in the Theorem 1:

0.20
(
0.20ψ1(0) + 0.81ψ2(0)

)3
+ 0.91

(
0.91ψ1(0)− 0.61ψ2(0)

)3
((
0.20ψ1(0) + 0.81ψ2(0)

)4
+
(
0.91ψ1(0)− 0.61ψ2(0)

)4) 3
4

+
0.17

(
0.17ψ1(0)− 0.32ψ2(0)

)3
+ 0.17

(
0.17ψ1(0) + 0.39ψ2(0)

)3
((
0.17ψ1(0)− 0.32ψ2(0)

)4
+
(
0.17ψ1(0) + 0.39ψ2(0)

)4) 3
4

+
0.004

(
0.004ψ1(0) + 0.16ψ2(0)

)3
+ 0.11

(
0.11ψ1(0)− 0.14ψ2(0)

)3
((
0.004ψ1(0)− 0.16ψ2(0)

)4
+
(
0.11ψ1(0) − 0.14ψ2(0)

)4) 3
4

= − 1

3α
,

0.81
(
0.20ψ1(0) + 0.81ψ2(0)

)3 − 0.61
(
0.91ψ1(0)− 0.61ψ2(0)

)3
((
0.20ψ1(0) + 0.81ψ2(0)

)4
+
(
0.91ψ1(0)− 0.61ψ2(0)

)4) 3
4

+
−0.32

(
0.17ψ1(0) − 0.32ψ2(0)

)3
+ 0.39

(
0.17ψ1(0) + 0.39ψ2(0)

)3
((
0.17ψ1(0)− 0.32ψ2(0)

)4
+
(
0.17ψ1(0) + 0.39ψ2(0)

)4) 3
4

+
0.17

(
0.004ψ1(0) + 0.16ψ2(0)

)3 − 0.14
(
0.11ψ1(0) − 0.14ψ2(0)

)3
((
0.004ψ1(0) + 0.16ψ2(0)

)4
+
(
0.11ψ1(0) − 0.14ψ2(0)

)4) 3
4

= − 4

3α
.

By supplementing this system with the equivalence ψ1(0)
2 + ψ2(0)

2 = 1 according to the corollary
of 1, we get the following solution:

ψ1(0) = −0.50, ψ2(0) = −0.87, α = 0.96.

Then α = M(x0,X (3)) < 1, i.e. by definition of the Minkowski functional x0 ∈ X (3). Due to (4)
it is true that Nmin = 3.

Remark 1. In the Example 1 and everywhere else, the numerical solution of systems of algebraic
equations constructed according to the Corollary 1, is carried out in the Maple software environment
by means of built-in procedures based on the Newton method and its modifications [28].

The Theorem 2 and the Corollary 1 in conjunction with the Theorem 1 allow us to completely
solve the speed-in-action problem for a linear discrete-time system in the case of a superellipsoidal
structure of the set of admissible values of control (6). The solution of the conditions (5) according
to the Corollary 1 is equivalent to the numerical solution of a system of algebraic equations. At
the same time, the optimal process and the trajectory of the conjugate system can be calculated
from the recurrence relations presented in the Theorem 1. Optimal control is explicitly defined by
point 2 of Lemma 5.

5. INTERNAL SUPERELLIPSOIDAL APPROXIMATION
OF A CONVEX BODY

The case of (6) is quite special. It is often impossible to guarantee even the strict convexity of
the set U . In this connection, it turns out to be relevant to carry out an internal approximation
of U by a set Û of the form (6). Transition in the speed-in-action problem from the system (A,U)
to the auxiliary system (A, Û) allows us to construct a guaranteeing control in the original system
based on the methods presented in the Section 4 in relation to the auxiliary system.
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In this case, the error of the guaranteeing solution in comparison with the optimal one will be
the smaller, the larger the approximating set Û is by inclusion. This fact leads to the need to solve
the problem of optimal superellipsoidal approximation of a convex compact body U ⊂ R

n by a set
of the form (6). As an approximation quality criterion, we consider the Lebesgue measure of the
n-dimensional set μ(·) [25, Section 1 § 3 ch. V]. The resulting optimization problem will take the
form

μ(U \BEr(a1, . . . , an)) → min
a1,...,an,r,B

,

ai > 0, i = 1, n,

r > 1,

B ∈ R
n×n, detB �= 0,

Er(a1, . . . , an) ⊂ U .

This problem can be divided into two separate stages: the first stage is the selection of the ori-
entation matrix of the superellipse B ∈ Rn×nand the second stage is the selection of the numbers
a1, . . . , an > 0, r > 1, parametrizing the set (1).

5.1. Selection of the Orientation Matrix of a Superellipsoidal Set

In general, the search for the optimal value of the matrix B can be a complex optimization
problem, the solvability conditions of which are unknown due to its non-convexity. We propose a
heuristic method for choosing B in the form of an orthogonal matrix. Since the rotation transfor-
mation preserves the Lebesgue measure, then the following equalities are valid:

μ(U \BEr(a)) = μ(B−1(U \BEr(a))) = μ(B−1U \ Er(a)).

They make it possible to reduce the original approximation problem to the problem of optimal
internal approximation of an arbitrary convex compact body B−1U ⊂ R

n by the superellipse Er(a).
Due to the symmetry of the set Er(a), it is acceptable to assume that B−1 should provide such a
rotation of the set U , so that the coordinate axes coincide with any axes of “symmetry” of U , for
example, with the main axes of inertia of a convex bodie U [29, § 32 ch. VI].

In this case, B must satisfy the condition

IU = Bdiag(λ1, . . . , λn)B
−1,

where IU ∈ R
n×n is the inertia tensor of a convex body U ⊂ R

n:

IU =

⎛
⎜⎝
I11 . . . I1n
...

. . .
...

In1 . . . Inn

⎞
⎟⎠ , Iij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫
U

n∑
k=1
k �=i

x2kdx1 . . . dxn, i = j,

−
∫
U

xixjdx1 . . . dxn, i �= j.

Then according to [30, Theorem 3.1.11] B is determined in a unique way up to the permutation of
its columns and its construction is reduced to calculating the eigenvectors of the matrix IU .

Example 2. Let us calculate the matrix B for the polyhedron U ⊂ R
2:

U = conv

{(
4
4

)
,

(
2
4

)
,

(
−2
2

)
,

(
−4
−4

)
,

(
−2
4

)
,

(
2
−2

)}
.
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Fig. 1. The original set U (solid line) and the set B−1U oriented along the axes of inertia (dotted line).

The inertia tensor IU and the matrix B have the following numerical values:

IU =

(
153.28 −85.03
−85.03 121.20

)
, B =

(
0.64 −0.77
0.77 0.64

)
.

Then the oriented set B−1U , for which it is necessary to carry out a further superellipsoidal ap-
proximation, has the following form:

B−1U = conv

{(
0.53
5.63

)
,

(
−1.01
4.36

)
,

(
−2.82
0.26

)
,

(
−0.53
−5.63

)
,

(
1.01
−4.36

)
,

(
2.82
−0.26

)}
.

The initial set U and the oriented set B−1U are shown in Fig. 1.

5.2. Selection of Parameters of a Superellipsoidal Set

Next, we will assume that the matrix B of the orientation of the superellipse is selected in the
form of a rotation matrix. Then the initial approximation problem is reduced to the following
optimization problem:

μ(U \ Er(a1, . . . , an)) → min
a1,...,an,r

,

ai > 0, i = 1, n,

r > 1,

Er(a1, . . . , an) ⊂ U .

(7)

We formulate a number of statements that allow us to reduce the problem (7) to an equivalent
convex programming problem that can be solved numerically.
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Lemma 6. Let Er(a) be defined by the relations (1). Then equality

μ(Er(a)) = a1 · . . . · an

(
2Γ
(
1
r + 1

))n
Γ
(n
r + 1

)
is correct.

Lemma 7. Let Er(a) be defined by the relations (1), U is the convex body.

Then the inclusion of Er(a) ⊂ U is valid if and only if the inequality

(
n∑

i=1

∣∣∣∣xiai
∣∣∣∣r
) 1

r

� M(x,U)

is true for any x ∈ R
n.

Based on the Lemmas 6 and 7 we present the problem (7) in an equivalent form.

Theorem 3. Let Er(a) be defined by the relations (1), U is a convex body. Then the optimization
problem (7) is equivalent to the following problem:

a1 · . . . · an

(
2Γ
(
1
r + 1

))n
Γ
(n
r + 1

) → max
a1,...,an,r

,

(
n∑

i=1

∣∣∣∣xiai
∣∣∣∣r
) 1

r

� M(x,U), for any x ∈ R
n,

ai > 0, i = 1, n,

r > 1.

(8)

Generally speaking, (8) is not a convex programming problem, which means that in general it
cannot be solved by standard optimization methods [31]. We will carry out a number of transfor-
mations that will allow us to solve (8) numerically. We will also separately consider the case when
U is a polyhedron, which will allow us to explicitly construct the Minkowski functional M(x,U).

Lemma 8. Let Er(a) be defined by the relations (1), U is a bounded polyhedron, i.e. there are
such K ∈ N, p1, . . . , pK ∈ R

n \ {0}, α1, . . . , αn > 0, which provide representation

U =
K⋂
k=1

{x ∈ R
n : (pk, x) � αk}.

Then the inclusion of Er(a) ⊂ U is equivalent to the condition∥∥∥diag(a)pk∥∥∥
q
� αk, k = 1,K.

The complexity of solving the problem (8) lies in the fact that the set of acceptable values of
the vector of optimization variables (r, a1, . . . , an)

T is not convex in R
n+1. Nevertheless, for a fixed

value of r > 1 the corresponding set of valid values of the vector (a1, . . . , an)
T is already convex.

We formulate this fact in the form of a lemma.

Lemma 9. Let Er(a) be defined by the relations (1), U is a convex and compact body, for arbi-
trary r > 1 by Pr(U) = {a ∈ R

n : Er(a) ⊂ U , ai > 0, i = 1, n} we denote the set of all valid values
of a1, . . . , an in the problems (7) and (8).

Then Pr(U) is a convex and compact set.
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The Lemma 9 allows us to approximate the equivalent problems (7) and (8) with a similar
optimization problem in which the domain of the parameter r is narrowed to a finite set:

r ∈ {r1, . . . , rM} ⊂ (1;+∞).

Then the approximation problem reduces to solving N convex programming problems of the fol-
lowing form:

a1 · . . . · an → max
a1,...,an

,

(a1, . . . , an)
T ∈ Pr(U).

(9)

The choice of the resulting superellipsoidal approximation corresponding to a specific value of
r∗ ∈ {r1, . . . , rM} may be made in accordance with the Lemma 6 and the idea of maximizing the
measure of the nested superellipse:

r∗ = arg max
r∈{r1,...,rM}

μ(Er(a∗(r))), (10)

where a∗(r) ∈ R
n is the maximum point in the problem (9).

Example 3. Let’s construct a superellipsoidal approximation for the set B−1U , calculated in the
Example 2. To use the Lemma 8 we represent B−1U as a bounded polyhedron:

B−1U =
6⋂

k=1

{
x ∈ R

2 : (pk, x) � αk

}
,

(
p1, . . . , p6

)
=

(
−1.28 −4.09 −5.90 −1.28 −4.09 −5.90
1.54 1.80 −2.29 −1.54 −1.80 2.29

)
,

(α1, . . . , α6) = (8, 12, 16, 8, 12, 16).

We describe the set Pr(U) for r ∈
{
4
3 , 2, 4

}
and solve the corresponding optimization problems (9).

P 4
3
(U) :

(
2.65a41 + 5.62a42

) 1
4 � 8,(

280.53a41 + 10.57a42

) 1
4 � 12,(

1208.13a41 + 27.48a42

) 1
4 � 16,

⎧⎪⎪⎨
⎪⎪⎩
a∗1

(
3

4

)
= 2.48,

a∗2

(
3

4

)
= 5.16.

P2(U) :
(
1.63a21 + 2.37a22

) 1
2 � 8,(

16.75a21 + 3.25a22

) 1
2 � 12,(

34.76a21 + 5.24a22

) 1
2 � 16,

{
a∗1(2) = 1.92,

a∗2(2) = 4.94.

P4(U) :
(

3
√
2.65a41 +

3
√
5.62a42

) 3
4

� 8,

(
3

√
280.53a41 +

3

√
10.57a42

) 3
4

� 12,

(
3
√
1208.13a41 +

3
√
27.48a42

) 3
4

� 16,

{
a∗1(4) = 1.61,

a∗2(4) = 4.16.
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Fig. 2. The original set U (solid line) and its superellipsoidal approximation BE 4
3

(
a∗
(
4
3

))
(dotted line).

Let us compare the obtained solutions in the sense of the Lebesgue measure of the approximating
superellipse in accordance with the Lemma 6:

μ

(
E 4

3

(
a∗
(
4

3

)))
= 32.60, μ (E2 (a∗ (2))) = 29.79, μ (E4 (a∗ (4))) = 24.86.

It follows that the best approximation of B−1U is E 4
3

(
a∗
(
4
3

))
. Therefore, for the initial set U the

most qualitative approximation of the considered ones is the set BE 4
3

(
a∗
(
4
3

))
. The results of the

approximation are shown in Fig. 2.

6. EXAMPLES OF OPTIMAL CONTROL FORMATION

We will construct a solution to the speed problem for (2) systems of various dimensions based
on the developed methods. To do this, we will use the following

Algorithm 1.

1. For a given set U ⊂ R
n construct the inertia tensor IU and calculate the orientation matrix

of the superellipsoidal set B ∈R
n×n according to the Subsection 5.1.

2. Select the set of values of the superellipsoidal approximation parameter {r1, . . . , rM} ⊂
(1;+∞).

3. For all r∈{r1, . . . , rM} construct optimization problems (9) for the set B−1U and calculate
the corresponding maximum points a∗(r).

4. Using the Lemma 10 to determine the optimal parameter of the superellipsoidal approxima-
tion r∗ according to (10).

5. For a given initial state x0 ∈R
n and various N ∈N construct the systems of equations pre-

sented in the Corollary 1.
6. Determine the value of Nmin as the smallest value of N ∈N, at which the solution of the

system of equations constructed at step 5 satisfies the condition α � 1.
7. For the value Nmin calculated at step 6 and the corresponding α > 0 and ψ(0) ∈ R

n \ {0}
construct the optimal control {u∗(k)}Nmin−1

k=0 for the system (A,BEr∗(a∗(r∗))) according to the
Theorem 1 and the Lemma 5.
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Table 1. Optimal control process for a two-dimensional system

k 0 1 2 3 4 5 6 7 8 9 10

x1(k) −4.5 2.19 −3.86 3.01 −3.36 2.95 −2.82 2.54 −1.94 1.97 0

x2(k) 8 −8.51 7.96 −7.86 7.28 −6.76 5.96 −4.95 3.70 −1.83 0

u1(k) 3.19 0.27 2.77 −1.51 2.38 −1.95 2.21 −2.07 2.15 −2.11 –

u2(k) 3.99 −2.74 3.96 −3.59 3.88 −3.75 3.83 −3.79 3.81 −3.80 –

Table 2. Results of superellipsoidal approximation for a three-dimensional system

r 6
5

4
3 2 4 6

μ (Er (a∗(r))) 57,58 61,11 57,64 41,91 35,90

a∗1(r) 5,06 5,04 4,53 3,71 3,45

a∗2(r) 2,48 2,24 1,58 1,20 1,10

a∗3(r) 2,29 2,22 1,98 1,45 1,32

Example 4. Let n = 2. As U we choose the polyhedron considered in the Examples 2 and 3, we
define the matrix of the system and the initial state as follows:

A =

(
2 1
1 −1

)
, x0 =

(
−4.5
8

)
.

We can assume that the set U is approximated by BE 4
3

(
a∗
(
4
3

))
according to the Example 3. Then

the solution of the system of equations presented in the Corollary 1, for N = 9 has the form

α = 1.019, ψ1(0) = 0.775, ψ2(0) = −0.632.

The solution obtained for N = 10, has the form

α = 0.998, ψ1(0) = 0.792, ψ2(0) = −0.610.

From where it follows that for the auxiliary system
(
A,BE 4

3

(
a∗
(
4
3

)))
due to (4) the equation

Nmin = 10 is correct.

The optimal trajectory of the system and optimal control, calculated on the basis of the Theo-
rem 1, are presented in Table 1.

Based on the exact methods described in [6], value Nmin = 9 was calculated for the original
system (A,U). Thus, from the point of view of control quality, the error of the guaranteeing
solution is one step.

Example 5. Let n = 3. The set of acceptable control values, the matrix of the system and the
initial state are defined as follows:

U = conv

⎧⎪⎨
⎪⎩
⎛
⎜⎝ 4

4
−3

⎞
⎟⎠
⎛
⎜⎝ 2

4
−3

⎞
⎟⎠
⎛
⎜⎝−2

2
0

⎞
⎟⎠
⎛
⎜⎝−4
−4
3

⎞
⎟⎠
⎛
⎜⎝−2
−4
3

⎞
⎟⎠
⎛
⎜⎝ 2
−2
0

⎞
⎟⎠
⎛
⎜⎝00
4

⎞
⎟⎠
⎛
⎜⎝ 0

0
−4

⎞
⎟⎠
⎫⎪⎬
⎪⎭ ,

A =

⎛
⎜⎝ 0.486 −0.315 0.689
−0.757 −0.202 0.442

0 −0.818 −0.375

⎞
⎟⎠ , x0 =

⎛
⎜⎝2624
30

⎞
⎟⎠ .

The inertia tensor IU and the orientation matrix B have the form

IU =

⎛
⎜⎝ 526.73 −135.75 132.41
−135.75 474.79 164.87
132.41 164.87 439.35

⎞
⎟⎠ , B =

⎛
⎜⎝ 0.49 0.73 0.48

0.59 −0.68 0.43
−0.64 −0.08 0.76

⎞
⎟⎠ .
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Fig. 3. The original set U and its super ellipsoidal approximation BE 4
3

(
a∗
(
4
3

))
.

The superellipsoidal approximation of the set B−1U is carried out for r ∈
{
6
5 ,

4
3 , 2, 4, 6

}
. Solu-

tions to problems of the form (9) are presented in Table 2. It follows that the best approxima-

tion is E 4
3

(
a∗
(
4
3

))
. Graphically, the result of the superellipsoidal approximation of U by the

set BE 4
3

(
a∗
(
4
3

))
is shown in Fig. 3. The solution of the system of equations presented in the

Corollary 1 for N = 9 has the form

α = 1.038, ψ1(0) = −0.827, ψ2(0) = −0.012, ψ3(0) = −0.563.

The solution obtained for N = 10 has the form

α = 0.890, ψ1(0) = −0.805, ψ2(0) = −0.075, ψ3(0) = −0.589.

It follows that for the auxiliary system
(
A,BE 4

3

(
a∗
(
4
3

)))
due to (4) the equality Nmin = 10 is

correct.

The optimal trajectory of the system and optimal control, calculated on the basis of the Theo-
rem 1, are presented in Table 3.

Based on the exact methods described in [6], value Nmin = 8 was calculated for the original
system (A,U). Thus, from the point of view of control quality, the error of the guaranteeing
solution is 2 steps.

Table 3. Optimal control process for a three-dimensional system

k 0 1 2 3 4 5 6 7 8 9 10

x1(k) 26 23.64 −3.16 17.65 11.14 −0.59 9.51 3.71 1.01 2.11 0

x2(k) 24 −11.76 −25.76 14.85 −10.19 −10.80 6.71 −5.75 −1.86 −0.03 0

x3(k) 30 −29.28 17.93 13.24 −16.11 11.64 4.12 −6.56 4.39 0.65 0

u1(k) −2.10 1.80 −1.28 −1.88 1.88 −1.62 −1.64 1.91 −1.99 −1.48 –

u2(k) −0.48 2.70 −0.68 0.33 2.70 −1.06 0.99 2.68 −1.59 1.30 –

u3(k) 1.60 −2.67 −1.13 1.01 −2.73 −0.36 0.48 −2.77 0.77 0.21 –
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7. CONCLUSION

The article considers the solution of the speed-in-action problem for linear discrete-time systems
with limited control. It is assumed that the set of acceptable control values is a convex compact body
containing the origin, the matrix of the system is nondegenerate. For the case of strictly convex
control constraints, sufficient conditions for the optimality of the control process are formulated in
the form of a discrete maximum principle. At the same time, from a practical point of view, the
procedure for constructing optimal control is reduced to calculating the initial conditions of the
conjugate system.

A class of superellipsoidal sets, which are a generalization of the ellipsoids for normalized space,
is studied in detail. In particular, the dependence of the normal cone on the support point is
explicitly described, the Lebesgue measure of the superellipse in n-dimensional space is calculated.
In the case when the set of admissible values of the controls of the system is a superellipsoidal set,
the definition of the initial conditions of the conjugate system in the maximum principle is reduced
to a system of algebraic equations with a single solution. It is essential that the dimensionality and,
consequently, the complexity of the solution of this system does not depend on the optimal value
of the objective function in the speed-in-action problem, but is determined only by the number
of phase variables, which ensures the effectiveness of such a method in comparison with other
approaches to the solution.

For systems with a general set of admissible values of controls, a superellipsoidal approximation
method has been developed, which consists in constructing a superellipse of maximum measure
inscribed in original convex body. The approximation procedure is divided into two stages: the
selection of the orientation matrix of the superellipse and the calculation of the parameters of the
superellipsoidal set. The first stage consists in calculating the inertia tensor of the approximated
body, the second stage can be reduced to solving a number of convex programming problems.

The developed technique makes it possible to build optimal control processes for various discrete-
time systems. Due to the general formulation of the superellipsoidal approximation problem, it is
possible to generalize the discrete maximum principle, including systems with control constraints
that are not strictly convex initially, for example, systems with linear constraints.

The obtained theoretical results are tested on numerical examples.
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APPENDIX

Proof of Lemma 4. Since the Minkowski functional of set (1) is a smooth function on all Rn:

M(x, Er(a) =
(

n∑
i=1

∣∣∣∣xiai
∣∣∣∣r
) 1

r

,

then according to [24, Theorem 26.1] for an arbitrary x ∈ ∂Er(a) the representation is correct

N (x, Er(a)) = cone{∇xM(x, Er(a))} \ {0}

= cone

⎧⎨
⎩1

r

(
n∑

i=1

∣∣∣∣xiai
∣∣∣∣r
) 1

r
−1(

r|x1|r−1sgn(x1)

|a1|r
, . . . ,

r|xn|r−1sgn(xn)

|an|r

)T
⎫⎬
⎭ \ {0}

= cone

⎧⎨
⎩
(
|x1|r−1sgn(x1)

|a1|r
, . . . ,

|xn|r−1sgn(xn)

|an|r

)T
⎫⎬
⎭ \ {0}.

Hence follows point 1 of the Lemma 4.
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According to the definition of a normal cone, the following inclusion is true:

p ∈ N (x∗(p), Er(a)).

Then, taking into account point 1 of Lemma 4 there will be α > 0 such that

p = α

(
|x∗1(p)|r−1sgn(x∗1(p))

|a1|r
, . . . ,

|x∗n(p)|r−1sgn(x∗n(p))

|an|r

)T

,

x∗(p) =
1

α
1

r−1

(
|p1ar1|

1
r−1 sgn(p1), . . . , |pnarn|

1
r−1 sgn(pn)

)T

=
1

α
1

r−1

(
|p1|q−1aq1sgn(p1), . . . , |pn|q−1aqnsgn(pn)

)T

=
1

α
1

r−1

diag(a)Iq(diag(a)p).

The value of α can be calculated from the condition x∗(p) ∈ ∂Er(a), which is equivalent to the
equality (

n∑
i=1

∣∣∣∣x∗i (p)ai

∣∣∣∣r
) 1

r

= 1,

1 =
1

α
1

r−1

(
n∑

i=1

∣∣∣∣∣ |pi|
q−1aqi
ai

∣∣∣∣∣
r) 1

r

=
1

α
1

r−1

(
n∑

i=1

|piai|q
) 1

r

,

α
1

r−1 =

(
n∑

i=1

|piai|q
) 1

r

= ‖diag(a)p‖q−1
q .

The second point of the Lemma 4 is proved.

Proof of Lemma 5. Point 1 follows from point 1 of Lemma 4, point 2 of Lemma 3 and the
representation

N (u,U) = N (DD−1u,DEr(a)).

Point 2 follows from point 2 of the Lemma 4 and the chain of equalities

arg max
u∈U

(p, u) = Darg max
x∈Er(a)

(p,Dx) = Darg max
x∈Er(a)

(DTp, x).

Lemma 5 is proved.

Proof of Theorem 2. Since x0 �= 0, then according to the definitions of the Minkowski functional
and the normal cone, the conditions (5) are equivalent to the conditions

−ψ(0) ∈ N
(
x0
α
,X (Nmin)

)
, (A.1)

x0
α

∈ ∂X (Nmin). (A.2)

The inclusion of (A.2) due to the Lemma 1 and the representation (6) is equivalent to the condition

x0
α

∈ ∂

⎛
⎝−Nmin∑

k=1

A−kU

⎞
⎠ = ∂

Nmin∑
k=1

A−kBEr(a).
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Then, taking into account point 1 of the Lemma 3 and the definition of the algebraic sum of sets
inclusion (A.1) is equivalent to the fact that there are x1 ∈ A−1BEr(a), . . . , xNmin ∈ A−NminBEr(a),
for which the following relations are true:

x0
α

=
Nmin∑
k=1

xk,

−ψ(0) ∈ N
(
x0
α
,X (Nmin)

)
= N

⎛
⎝Nmin∑

k=1

xk,
Nmin∑
k=1

A−kBEr(a)

⎞
⎠ =

Nmin⋂
k=1

N
(
xk, A−kBEr(a)

)
.

Due to point 2 of Lemma 5 it is possible if and only if the condition

xk =
A−kBdiag(a)Iq

(
−diag(a)(A−kB)Tψ(0)

)
‖diag(a)(A−kB)Tψ(0)‖q−1

q

is correct. Since Iq(−x) = −Iq(x) for any x ∈ R
n, we obtain equivalent relations

x0
α

=
Nmin∑
k=1

xk = −
Nmin∑
k=1

A−kBdiag(a)Iq
(
diag(a)(A−kB)Tψ(0)

)
‖diag(a)(A−kB)Tψ(0)‖q−1

q

.

That is, the conditions (5) are equivalent to the equality specified in the condition of the Theorem 2.

Proof of Corollary 1. Due to the Theorem 2 the solution of the system exists and satisfies the
conditions (5). Then, due to the Lemma 1 and the symmetry of sets of the form (1) there will be
such x1 ∈ αA−1BEr(a), . . . , xNmin ∈ αA−NminBEr(a), which make true equality x0 = x1 + . . . xNmin.
From where, by point 1 of Lemma 3 it follows that any solution (ψ(0), α) satisfies inclusion

−ψ(0) ∈ N (x0, αX (Nmin)) =
Nmin⋂
k=1

N
(
xk, A−kBEr(a)

)
.

But according to point 1 of Lemma 5 for all k = 1, Nmin sets N
(
xk, A−kBEr(a)

)
are one-

dimensional rays with starting at 0, i.e. they contain a single vector −ψ(0), satisfying the equality
(ψ(0), ψ(0)) = 1. The uniqueness of the value α > 0 follows from the definition of the Minkowski
functional and the conditions (5).

The consequence 1 is proved.

Lemma 10. Let Er(a) be defined by the relations (1). Then

μ(Er(a)) = a1 · . . . · anμ(Er(1, . . . , 1)).

Proof of Lemma 10. Consider replacement of variables⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x1 = a1y1,

...

xn = anyn,

the Jacobian of which has the form J = a1 · . . . · an. Then

μ(Er(a)) =
∫

n∑
i=1

∣∣∣xiai ∣∣∣r�1

1dx =

∫
n∑

i=1

|yi|r�1

|J |dy = a1 · . . . · anμ(Er(1, . . . , 1)).
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The Lemma 10 is proved.

Proof of Lemma 6. In the part of the space xi � 0, i = 1, n consider the replacement of variables⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = R(cos φ2 · cosφ3 . . . · cosφn)
2
r ,

x2 = R(sinφ2 · cosφ3 . . . · cosφn)
2
r ,

x3 = R(sinφ3 · cosφ4 . . . · cosφn)
2
r ,

...

xn = R(sinφn)
2
r .

R � 0, φj ∈
(
0;

π

2

)
, j = 2, n.

(A.3)

Construct a replacement Jacobian (A.3).

∂xi
∂R

=
xi
R
, i = 1, n,

∂xi
∂φj

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2

r

cosφj

sinφj
xi, i = 2, n, j = i,

− 2

r

sinφj

cosφj
xi, i = 1, n − 1, j = i+ 1, n,

0, i = 3, n, j = 2, i− 1,

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1
R

x2
R

x3
R

. . .
xn
R

−2x1
r

tan φ2
2x2
r

cotφ2 0 . . . 0

−2x1
r

tan φ3 −2x2
r

tanφ2
2x3
r

cotφ3 . . . 0

...
...

...
. . .

...

−2x1
r

tanφn −2x2
r

tan φn −2x3
r

tanφn . . .
2xn
r

cotφn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1

R

(
n∏

i=1

xi

)⎛⎝ n∏
j=2

tanφj

⎞
⎠(2

r

)n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1

−1 cot2φ2 0 . . . 0

−1 −1 cot2φ3 . . . 0
...

...
...

. . .
...

−1 −1 −1 . . . cot2φn

∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1

R

(
n∏

i=1

xi

)⎛⎝ n∏
j=2

tan φj

⎞
⎠(2

r

)n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1

0 cot2φ2 + 1 1 . . . 1

0 0 cot2φ3 + 1 . . . 1
...

...
...

. . .
...

0 0 0 . . . cot2φn + 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

1

R

(
n∏

i=1

xi

)⎛⎝ n∏
j=2

(tan φj + cotφj)

⎞
⎠(2

r

)n−1

=
1

R

(
n∏

i=1

xi

)⎛⎝ n∏
j=2

1

sinφj cosφj

⎞
⎠(2

r

)n−1

= Rn−1
(
2

r

)n−1 n∏
j=2

(sinφj)
2
r
−1(cos φj)

2
r
(j−1)−1.
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Then we can calculate the Lebesgue measure of the superellipse Er(1, . . . , 1) via the Lebesgue
integral:

μ(Er(1, . . . , 1)) =
∫

n∑
i=1

|xi|r�1

1dx = 2n
1∫

0

Rn−1
(
2

r

)n−1

dR
n∏

j=2

π
2∫

0

(sinφj)
2
r
−1(cos φj)

2
r
(j−1)−1dφj .

For each j = 2, n we calculate auxiliary integrals:

π
2∫

0

(sinφj)
2
r
−1 (cosφj)

2
r
(j−1)−1 dφj =

π
2∫

0

(sinφj)
2
r
−1 (cosφj)

2
r
(j−1)−2 d sinφj

=

π
2∫

0

(sinφj)
2
r
−1
(
1− sin2 φj

) j−1
r

−1
d sinφj =

1

2

π
2∫

0

(
sin2 φj

) 1
r
−1 (

1− sin2 φj

) j−1
r

−1
d sin2 φj

=
1

2

1∫
0

t
1
r
−1(1− t)

j−1
r

−1dt =
1

2
B

(
1

r
,
j − 1

r

)
,

where B(x, y) denotes the Euler beta function.

Then the original integral has the form

μ(Er(1, . . . , 1)) =
2n

n

(
2

r

)n−1 n∏
j=2

(
1

2
B

(
1

r
,
j − 1

r

))
=

2

n

(
2

r

)n−1 n∏
j=2

Γ
(
1
r

)
Γ
(
j−1
r

)
Γ
(
1
r +

j−1
r

)

=
2

n

(
2

r
Γ

(
1

r

))n−1 n−1∏
j=1

Γ
(
j
r

)
Γ
(
j+1
r

) =
2

n

(
2

r
Γ

(
1

r

))n−1 Γ
(
1
r

)
Γ
(n
r

) =

(
2
rΓ
(
1
r

))n
n
rΓ
(n
r

) =

(
2Γ
(
1
r + 1

))n
Γ
(n
r + 1

) .

Taking into account the Lemma 10 we finally obtain the equality

μ(Er(a)) = a1 · . . . · an

(
2Γ
(
1
r + 1

))n
Γ
(n
r + 1

) .

Lemma 6 is proved.

Lemma 11. Let U1,U2 ⊂ R
n be convex and compact bodies containing 0 as an internal point.

In this case, the inclusion U1 ⊂ U2 is true if and only if the following inequality is correct for any
x ∈ R

n:

M(x,U1) � M(x,U2).

Proof of Lemma 11. Let U1 ⊂ U2, x ∈ R
n. Then by definition of the Minkowski functional

x ∈ M(x,U1)U1 ⊂ M(x,U1)U2,

M(x,U1) � inf{t > 0: x ∈ tU2} = M(x,U2).

Let for all x ∈ R
n inequality be fair

M(x,U1) � M(x,U2).
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Then by definition of the Minkowski functional

U1 = {x ∈ R
n : M(x,U1) � 1} ⊂ {x ∈ R

n : M(x,U2) � 1} = U2.

The Lemma 11 is proved.

Proof of Lemma 7. Lemma 7 follows directly from Lemma 11 and the fact that

M(x, Er(a)) =
(

n∑
i=1

∣∣∣∣xiai
∣∣∣∣r
) 1

r

.

Lemma 7 is proved.

Proof of Theorem 3. Due to the Lemma 7 the inclusion Er(a) ⊂ U is equivalent to the condition

(
n∑

i=1

∣∣∣∣xiai
∣∣∣∣r
) 1

r

� M(x,U) for any x ∈ R
n.

Also, due to this limitation, it is true that

μ(U \ Er(a)) = μ(U)− μ(Er(a)).

Hence, taking into account the fact that the value of μ(U) does not depend on optimization variables,
the statement of the Theorem 3 follows.

Lemma 12. Let there be p1, . . . , pK ∈ R
n \ {0} and α1, . . . , αK > 0 such that

U =
K⋂
k=1

{
u ∈ R

n : (pk, u) � αk

}
, 0 ∈ int U .

Then

M(x,U) = max
k=1,K

(pk, x)

αk
.

Proof of Lemma 12. Since for any t > 0

tU =
{
u ∈ R

n : u = tx, x ∈ U
}
=
{
u ∈ R

n : u = tx, (pk, x) � αk, k = 1, K
}

=

{
u ∈ R

n :

(
pk,

u

t

)
� αk, k = 1, K

}
=
{
u ∈ R

n : (pk, u) � tαk, k = 1, K
}

=
K⋂
k=1

{
u ∈ R

n : (pk, u) � tαk

}
,

then according to the definition of the Minkowski functional

M(x,U) = inf{t > 0: x ∈ tU} = inf
{
t > 0: (pk, x) � tαk, k = 1,K

}

= inf

{
t > 0: t � (pk, x)

αk
, k = 1, K

}
= max

k=1,K

(pk, x)

αk
.

The Lemma 12 is proved.
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Proof of Lemma 8. According to Lemmas 7 and 12, the inclusion of Er(a) ⊂ U is equivalent to
the fact that for all x ∈ R

n the following inequality is valid:(
n∑

i=1

∣∣∣∣xiai
∣∣∣∣r
) 1

r

� max
k=1,K

(pk, x)

αk
.

For x = 0, this inequality holds trivially. Consider the case of x �= 0 and move on to equivalent
inequalities. For all k = 1,K (

n∑
i=1

∣∣∣∣xiai
∣∣∣∣r
) 1

r

� (pk, x)

αk
,

αk � (pk, x)(
n∑

i=1

∣∣∣xi
ai

∣∣∣r) 1
r

.

Since these inequalities must be satisfied for any x ∈ R
n \ {0}, it is possible, taking into account

the Lemma 4, to proceed to the equivalent relation

αk � max
x∈Rn\{0}

(pk, x)(
n∑

i=1

∣∣∣xi
ai

∣∣∣r) 1
r

= max
x∈Rn\{0}

⎛
⎜⎜⎜⎜⎝pk,

x(
n∑

i=1

∣∣∣xi
ai

∣∣∣r) 1
r

⎞
⎟⎟⎟⎟⎠

= max
y∈∂Er(a)

(
pk, y

)
=
(
pk, x∗(pk)

)
=

(
pk, diag(a)Iq

(
diag(a)pk

))
‖diag(a)pk‖q−1

q

=
∥∥∥diag(a)pk∥∥∥

q
.

The Lemma 8 is fully proved.

Proof of Lemma 9. Denote for arbitrary convex sets U and p ∈ R
n \ {0} via s(p,U) support

function U :

s(p,U) = sup
x∈U

(p, x).

As demonstrated in [24, Theorem 11.5], an arbitrary convex compact set U is the intersection of
all support half-spaces:

U =
⋂

p∈Rn\{0}
{x ∈ R

n : (p, x) � s(p,U)} .

Then the inclusion Er(a) ⊂ U is equivalent to the fact that for every p ∈ R
n \ {0} the following

inequality will be satisfied

s(p, Er(a)) � s(p,U). (A.4)

Let a, b ∈ Pr(U), λ ∈ (0; 1), p ∈ R
n \ {0}. Then, due to point 2 of the Lemma 4 and the

Minkowski inequality [25, section 1 §1 ch. II] folowing relations are correct:

s(p, Er(λa+ (1− λ)b)) = max
x∈Er(λa+(1−λ)b)

(p, x) =

(
n∑

i=1

|(λai + (1− λ)bi)pi|q
) 1

q

� λ

(
n∑

i=1

|aipi|q
) 1

q

+ (1− λ)

(
n∑

i=1

|bipi|q
) 1

q

= λs(p, Er(a)) + (1− λ)s(p, Er(b)) � s(p,U).
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Then the condition Er(λa+ (1− λ)b) ⊂ U is correct, which by definition is equivalent to inclusion
λa+ (1− λ)b ∈ Pr(U). This implies the convexity of Pr(U).

Choose as p ∈ R
n \ {0} the i-th coordinate vector:

p = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0)T.

Then by construction it is correct that

s(±p, Er(a)) = ai.

Taking into account the condition (A.4), we obtain that for any a ∈ Pr(U) the following inequality
is correct:

0 � ai � min{s(p,U), s(−p,U)}.

Since U is limited, then for any p ∈ R
n \ {0} the value of the support function s(p,U) is finite.

Then Pr(U) is limited.

The closeness of Pr(U) follows from the closeness of U .
The Lemma 9 is proved.
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